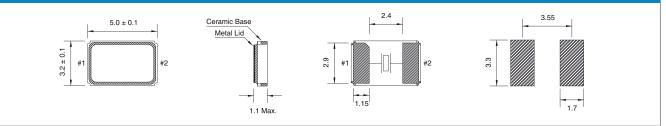
QTC5B Series

Features

- Low in height, suitable for thin equipment
- Ceramic package and metal lid assures high reliability
- Tight tolerance and stability available

Applications

- High density applications
- Modem, communication and test equipment
- PMCIA, wireless applications
- Automotive applications


General Specifications							
Frequency Range		8.000 to 160.000MHz					
Mode of Oscillation	Fundamental	8.000 to 52.000MHz					
	Third Overtone	40.000 to 160.000MHz					
Frenquency Tolerance at 25°C		±10 to ±30ppm (±30ppm standard)					
Frequency Stability over Tempe	rature Range	See Stability vs. Temperature Table					
Storage Temperature		-55 to +125°C					
Aging per Year		±3ppm					
Load Capacitance C _L		10 to 32pF and Series Resonance					
Shunt Capacitance C ₀		7.0pF max.					
Equivalent Series Resistance (ES	SR)	See ESR Table					
Drive Level		100µW typ.					
Insulation Resistance (MΩ)		500 at 100Vdc ±15Vdc					

Equivalent Series Resistance (ESR)									
Frequency Range - MHz	Ω max.	Mode of Operation							
8.000 to 10.000	150	Fundamental							
10.100 to 12.000	90								
12.100 to 15.000	70								
15.100 to 30.000	50								
30.100 to 52.000	30								
40.000 to 52.000	100	Third Overtone							
52.100 to 80.000	100								
80.100 to 156.000	80								

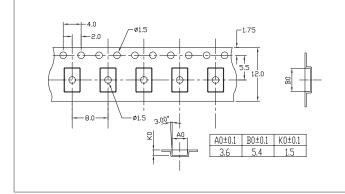
Frequency Stability vs. Temperature

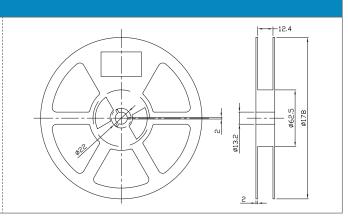
Operating Temperature	±10ppm	±20ppm	±30ppm	±50ppm	±100ppm			
-20°C - +70°C	0	0	0	0	0			
-40°C - +85°C	0*	0	•	0	0			
-40°C - +105°C	-	-	-	0	0			
-40°C - +125°C	-	-	-	-	0			
*Operating Temperature -30 to +85°C ••••••••••••••••••••••••••••••••••••								

Mechanical Dimensions

Part Numbering Guide										
Quarz- technik Code	Package	Nominal Frequency (in MHz)	Vibration Mode	Load Capa- citance	Frequency Tolerance	Operating Temperature Range	Frequency Stability	Automotive Indicator	Packaging	
QT = Quarz- technik	C5B = 3.2x5 2-Pad SMD	7 digits including the decimal point (f.ie. 12.0000)	F = AT-Fund	S = Series A = 8pF B = 12pF C = 16pF D = 18pF E = 20 pF	T1 = ±10ppm T2 = ±20ppm T3 = ±30ppm T5 = ±50ppm T0 = ±100ppm	C = -20 - +70°C I = -40 - +85°C E = -20 - +105°C A = -40 - +125°C	10 = ±10ppm 15 = ±15ppm 20 = ±20ppm 30 = ±30ppm 50 = ±50ppm 00 = ±100ppm	A = AEC-Q200	M = 250pcs Tape&Reel R = 1000pcs Tape&Reel B = Bulk	
Example: C	Example: QTC5B12.0000FBT3I30R bold letters = recommended standard specification									

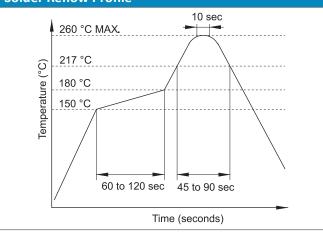
Quarztechnik Daun GmbH Quartz Crystals • Oscillators • Sensor Technology


 Alte Darscheider Strasse 15
 Phone: +49 0 6592-92070


 54550 Daun • Germany
 Fax: +49 0 6592-7670

info@quarztechnik.com www.quarztechnik.com

Tape and Reel Dimensions


Marking Code Guide

Contains frequency, Quarztechnik manufacturing code, production code (month and year) and load capacitance.

Month	Codes			Year Codes					Load Ca	e Code in	рF		
January	A	July	G	2010	0	2011	1	2012	2	pF	PN Code	рF	PN Code
February	В	August	н	2013	3	2014	4	2015	5	12	А	20	F
March	С	September	1	2016	6	2017	7	2018	8	18	В	22	G
April	D	October	J	2019	9	2020	0	2021	1	8	C	30	н
May	E	November	К							10	D	32	I.
June	F	December	L							16	E	S	S

Example: First Line: 12.000 (Frequency) Second Line: QA4A (Quarztechnik - January - 2014 - 12 pF)

Solder Reflow Profile

Environmental Specifications						
Mechanical Shock	MIL-STD-202, Method 213, C					
Vibration	MIL-STD-202, Method 201 & 204					
Thermal Cycle	MIL-STD, Method 1010, B					
Gross Leak	MIL-STD-202, Method 112					
Fine Leak	MIL-STD-202, Method 112					

Quarztechnik Daun GmbH Quartz Crystals • Oscillators • Sensor Technology

Alte Darscheider Strasse 15 Phone: +49 0 6592-92070 info@quarztechnik.com 54550 Daun • Germany Fax: +49 0 6592-7670

www.quarztechnik.com

